(7x^2-5x-+11)-(3x^2+2x-11)=1

Simple and best practice solution for (7x^2-5x-+11)-(3x^2+2x-11)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7x^2-5x-+11)-(3x^2+2x-11)=1 equation:



(7x^2-5x-+11)-(3x^2+2x-11)=1
We move all terms to the left:
(7x^2-5x-+11)-(3x^2+2x-11)-(1)=0
We use the square of the difference formula
(7x^2-5x-11)-(3x^2+2x-11)-1=0
We get rid of parentheses
7x^2-3x^2-5x-2x-11+11-1=0
We add all the numbers together, and all the variables
4x^2-7x-1=0
a = 4; b = -7; c = -1;
Δ = b2-4ac
Δ = -72-4·4·(-1)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{65}}{2*4}=\frac{7-\sqrt{65}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{65}}{2*4}=\frac{7+\sqrt{65}}{8} $

See similar equations:

| 1=d4− 3 | | –10+6q=4q | | 5(2c-3)=20 | | 14−2f=6 | | 2y+68+180-4y+8=180 | | (6x^2-4x+1)-(2x^2+6x-1)=1 | | –8f=–3−9f | | 3(x+28)+4(x+35)=14 | | 8=3f+5 | | 120+5x=60-5x | | 2(3x+4)=10x-2 | | 3(x+28)+4(x+34)=14 | | (2x^2-2x+3)-(x^2+5x-5)=1 | | 50-5y=1y-4 | | 0.2x2−5=0 | | 6=2w−2 | | 18+15y=-90 | | 2-2w=6 | | 2x2+0x−18=0 | | x12–5=–4 | | 6x+5=47*3+5x=3*6x+9=75*7x+5=54*7+2x=23 | | (5x^2-x+5)+(x^2+x-5)=1 | | x42=6 | | -2x-6=−,3x-21 | | t+1516=3 | | 26=2+2x | | 8x2+32x=0 | | 6f=1/2 | | 2s-14=30s | | 3x+5=×+25 | | -2-2x=-5-x | | 15w+19=19 |

Equations solver categories